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Abstract—We give a test that can distinguish efficiently
between product states of n quantum systems and states which
are far from product. If applied to a state |ψ〉 whose maximum
overlap with a product state is 1 − ε, the test passes with
probability 1 − Θ(ε), regardless of n or the local dimensions
of the individual systems. The test uses two copies of |ψ〉. We
prove correctness of this test as a special case of a more general
result regarding stability of maximum output purity of the
depolarising channel.

A key application of the test is to quantum Merlin-Arthur
games with multiple Merlins, where we obtain several struc-
tural results that had been previously conjectured, including
the fact that soundness amplification is possible and that two
Merlins can simulate many Merlins: QMA(k) = QMA(2) for
k ≥ 2. Building on a previous result of Aaronson et al, this
implies that there is an efficient quantum algorithm to verify
3-SAT with constant soundness, given two unentangled proofs
of eO(

√
n) qubits. Among other consequences, this result implies

complexity-theoretic obstructions to finding a polynomial-time
algorithm to determine separability of mixed quantum states,
even up to constant error, and also to proving “weak” variants
of the additivity conjecture for quantum channels.

Finally, our test can also be used to construct an efficient
test for determining whether a unitary operator is a tensor
product, which is a generalisation of classical linearity testing.

I. INTRODUCTION

Entanglement of quantum states presents both an oppor-
tunity and a difficulty for quantum computing. To describe
a pure state of n qudits (d-dimensional quantum systems)
requires a comparable number of parameters to a classical
probability distribution on dn items. Effective methods are
known for testing properties of probability distributions.
However, for quantum states many of these tools no longer
work. For example, due to interference, the probability of
a test passing cannot be simply written as an average over
components of the state. Moreover, measuring one part of
a state may induce entanglement between other parts of the
state that were not previously entangled with each other.

These counter-intuitive properties of entanglement ac-
count for many of the outstanding puzzles in quantum

information. In quantum channel coding, the famous ad-
ditivity violations of [1], [2] reflect how entangled inputs
can sometimes have advantages against even uncorrelated
noise. For quantum interactive proofs, the primary difficulty
is in bounding the ability of provers to cheat using entangled
strategies [3]. Even for QMA(k) (the variant of QMA with k
unentangled Merlins [4], [5]), most important open questions
could be resolved by finding a way to control entanglement
within each proof. Here, the recently discovered failure of
parallel repetition for entangled provers [6] is a sort of
complexity-theoretic analogue of additivity violations.

The situation is different when we consider quantum
states that are product across the n systems. In this case,
while individual systems of course behave quantumly, the
lack of correlation between the systems means that classical
tools such as Chernoff bounds can be used. For example,
in channel coding with product-state inputs, not only does
the single-letter Holevo formula give the capacity, so that
there is no additivity problem, but so-called strong converse
theorems are known, which prove that attempting to commu-
nicate at a rate above the capacity results in an exponentially
decreasing probability of successfully transmitting a mes-
sage [7], [8]. Naturally, many of the difficulties in dealing
with entangled proofs and quantum parallel repetition would
also go away if quantum states were constrained to be in
product form.

A. Our results

In this paper, we present a quantum test to determine
whether an n-partite state |ψ〉 is a product state or far from
any product state. We make no assumptions about the local
dimensions of |ψ〉; in fact, the local dimension can even be
different for different systems. The test passes with certainty
if |ψ〉 is product, and fails with probability Θ(ε) if the
overlap between |ψ〉 and the closest product state is 1 − ε.
An essential feature of our test (or, as we show, any possible
such test) is that it requires two copies of |ψ〉.

The parameters of our test resemble classical property-
testing algorithms [9]. In general, these algorithms make



a small number of queries to some object and accept
with high probability if the object has some property P
(completeness), and with low probability if the object is
“far” from having property P (soundness). Crucially, the
number of queries used and the success probability should
not depend on the size of the object. The main result of this
paper is a test for a property of a quantum state, in contrast
to previous work on quantum generalisations of property
testing, which has considered quantum algorithms for testing
properties of classical (e.g. [10], [11]) and quantum [12]
oracles (a.k.a. unitary operators, although see Section VI
for an application to this setting). In this sense, our work
is closer to a body of research on determining properties of
quantum states directly, without performing full tomography
(e.g. the “pretty good tomography” of Aaronson [13]). The
direct detection of quantities relating to entanglement has
received particular attention; see [14] for an extensive re-
view. However, previous work has generally focused on Bell
inequalities and entanglement witnesses, which are typically
designed to distinguish a particular entangled state from any
separable state. By contrast, our product test is generic and
will detect entanglement in any entangled state |ψ〉.

The product test is defined in Protocol 1 below, and
illustrated schematically in Figure 1. It uses as a subroutine
the swap test for comparing quantum states [15]. This test,
which can be implemented efficiently, takes two (possibly
mixed) states ρ, σ of equal dimension as input, and returns
“same” with probability 1

2 + 1
2 tr ρ σ, otherwise returning

“different”.

Protocol 1 (Product test).

The product test proceeds as follows.
1) Prepare two copies of |ψ〉 ∈ Cd1 ⊗ · · · ⊗

Cdn ; call these |ψ1〉, |ψ2〉.
2) Perform the swap test on each of the n

pairs of corresponding subsystems of |ψ1〉,
|ψ2〉.

3) If all of the tests returned “same”, accept.
Otherwise, reject.

The product test has appeared before in the literature. It
was originally introduced in [16] as one of a family of tests
for generalisations of the concurrence entanglement mea-
sure, and has been implemented experimentally as a means
of detecting bipartite entanglement directly [17]. Further, the
test was proposed in [12] as a means of determining whether
a unitary operator is product. Our contribution here is to
prove the correctness of this test for all n, as formalised in
the following theorem.

Theorem 1. Given |ψ〉 ∈ Cd1 ⊗ · · · ⊗ Cdn , let

1− ε = max{|〈ψ|φ1, . . . , φn〉|2 : |φi〉 ∈ Cdi , 1 ≤ i ≤ n}.
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Figure 1. Schematic of the product test applied to an n-partite state |ψ〉.
The swap test (vertical boxes) is applied to the n pairs of corresponding
subsystems of two copies of |ψ〉 (horizontal boxes).

Let Ptest(|ψ〉〈ψ|) be the probability that the product test
passes when applied to |ψ〉. Then

1− 2ε+ ε2 ≤ Ptest(|ψ〉〈ψ|) ≤ 1− ε+ ε2 + ε3/2.

Furthermore, if ε ≥ 11/32 > 0.343, Ptest(|ψ〉〈ψ|) ≤
501/512 < 0.979.

More concisely, Ptest(|ψ〉〈ψ|) = 1−Θ(ε).

This result is essentially best possible, in a number of
ways. First, we show in Section III that the product test
itself is optimal: among all tests for product states that use
two copies and have perfect completeness, the product test
has optimal soundness. We also show that there cannot exist
any non-trivial test that uses only one copy of the test state.
Second, our analysis of the test cannot be improved too
much, without introducing dependence on n and the local
dimensions. When ε is low, there are examples of states |ψ〉
which achieve the upper and lower bounds on Ptest(|ψ〉〈ψ|),
up to leading order. There is also an example of a bipartite
state for which ε is close to 1, but Ptest(|ψ〉〈ψ|) ≈ 1/2,
implying that the constant in our bound cannot be replaced
with a function of ε that goes to 0 as ε approaches 1.
(The bounds on this constant obtained from our proof could
easily be improved somewhat, but we have not attempted to
do this.) Finally, it is unlikely that a similar test could be
developed for separability of mixed states, as the separability
problem for mixed states has been shown to be NP-hard
[18], [19] (and indeed we improve on this result, as discussed
below).

The proof of Theorem 1 is based on relating the probabil-
ity of the test passing to the action of the qudit depolarising
channel. In fact, we prove a considerably more general
result regarding this channel. It is known that the maximum
output purity of this channel is achieved for product state
inputs [20]; our result, informally, says that any state that
is “close” to achieving maximum output purity must in
fact be “close” to a product state. This is a stability result
for this channel, which strengthens the previously known
multiplicativity result.

Somewhat more formally, let Dδ be the d-dimensional



qudit depolarising channel with noise rate 1− δ, i.e.

Dδ(ρ) = (1− δ)(tr ρ)
I

d
+ δ ρ

for ρ a arbitrary mixed state of one d-dimensional system,
and define the product state output purity to be Pprod(δ) =
tr(D⊗nδ |φ〉〈φ|)2, where |φ〉 is an arbitrary product state.
Then our main result is that for small enough δ > 0, if
tr(D⊗nδ |ψ〉〈ψ|)2 ≥ (1 − ε)Pprod(δ), then there is a product
state |φ1, . . . , φn〉 such that |〈ψ|φ1, . . . , φn〉|2 ≥ 1−O(ε).

B. Applications and interpretations of the product test

We describe several applications of the product test. The
most important of these is that this test can be used to relate
QMA(k) to QMA(2), as we will discuss in Section IV.
The complexity class QMA(k) is defined to be the class
of languages that can be decided with bounded error by a
poly-time quantum verifier that receives poly-size witnesses
from k unentangled provers1 [4], [5]. To put QMA(k)
inside QMA(2) with constant loss of soundness, we can
have two provers simulate k provers by each submitting
k unentangled proofs, whose lack of entanglement can be
verified with our product test. Indeed, this gives an alternate
way to understand our test as a method of using bipartite
separability to certify k-partite separability.

Surprisingly, using this result as a building block also
allows us to prove amplification for QMA(k) protocols.
It has been conjectured [4], [5] that such protocols can
be amplified to exponentially small soundness error. We
completely resolve this conjecture, showing that QMA(k)
protocols can be simulated in QMA(2) with exponentially
small soundness error, and hence QMA(k) = QMA(2) for
k ≥ 2.

As a further corollary, we can improve upon the results
of [5], [21] to obtain a protocol in QMA(2) that verifies
3-SAT with constant soundness gap and O(

√
npoly log(n))

qubits (where n is the number of clauses). This in turn has
consequences for the difficulty of approximating SEP(d, d),
the set of separable quantum states on d× d dimensions. It
was shown in Ref. [18] that SEP cannot be approximated
to precision exp(−d) in time poly(d) unless P = NP.
In Refs. [22], [19], this result was improved to show
that approximating SEP to precision 1/poly(d) is simi-
larly NP-hard. We show that there is a universal constant
δ > 0 such that, if K is a convex set that approximates
SEP to within trace distance δ, then membership in K
cannot be decided in polynomial time unless 3-SAT ∈
DTIME(exp(

√
n logO(1)(n))).

Our result has two further corollaries, under the same
assumption on the complexity of 3-SAT. First, we show
that the minimum output entropy of a quantum channel
cannot be estimated up to a constant in polynomial time.

1We assume throughout this paper that k is at most polynomial in the
input size.

Second, we show a hardness result for approximating the
ground-state energy of quantum systems under a mean-field
approximation. Our proof that amplification of QMA(2)
protocols is possible implies that one can derive stronger
hardness results for these tasks, if one is willing to make
stronger assumptions about the hardness of 3-SAT.

Our final application is that the product test can be used
to determine whether a unitary operator is a tensor product.
This can be seen [12] as one possible generalisation of the
well-studied problem of testing whether a boolean function
{0, 1}n → {0, 1} is linear [23]. This application is described
in Section VI.

These different applications of the product test reflect the
many different interpretations of Ptest(|ψ〉〈ψ|). It is related
in a precise sense to
• The purity of |ψ〉 after it is subjected to independent

depolarising noise.
• The maximum overlap of |ψ〉 with any product state.

The logarithm of this maximum overlap is an important
entanglement measure known as the geometric measure
of entanglement (see [24] and references therein).

• The overlap of |ψ〉⊗2 with the tensor product of the
symmetric subspaces of Cd1 ⊗ Cd1 , . . . ,Cdn ⊗ Cdn .

• The average overlap of |ψ〉 with a random product state.
• The average purity of |ψ〉 across a random partition of

[n] into two subsets.
Due to space limitations, discussion of some of these

interpretations is deferred to the full version [25], as are
many proofs.

II. OVERVIEW OF THE PROOF OF CORRECTNESS

In this section, we sketch the proof of Theorem 1. We
begin with two lemmas which allow the probability of
passing the product test to be understood, and to be related
to the output purity of the depolarising channel.

Lemma 2. We have

tr(D⊗nδ ρ)2 =
(

1− δ2

d

)n ∑
S⊆[n]

(
dδ2

1− δ2

)|S|
tr(ρ2

S),

and in particular

tr(D⊗n
1/
√
d+1

ρ)2 =
1

(d+ 1)n
∑
S⊆[n]

tr(ρ2
S),

and for pure product states,

Pprod(δ) := tr(D⊗nδ (|ψ1〉〈ψ1| ⊗ · · · ⊗ |ψn〉〈ψn|))2

=
(
d− 1
d

δ2 +
1
d

)n
.

Lemma 3. Let Ptest(ρ, σ) denote the probability that the
product test passes when applied to two mixed states ρ, σ ∈
B(Cd1 ⊗ · · · ⊗ Cdn). Define Ptest(ρ) := Ptest(ρ, ρ). Then

Ptest(ρ, σ) =
1
2n

∑
S⊆[n]

tr ρSσS ,



and in particular

Ptest(ρ) =
1
2n

∑
S⊆[n]

tr ρ2
S .

If d1 = d2 = · · · = dn = d, for some d, then

Ptest(ρ) =
(
d+ 1

2

)n
tr(D⊗n

1/
√
d+1

ρ)2.

The proof itself is split into two parts, beginning with
the case where ε is low. The difficult part is the upper
bound on Ptest(|ψ〉〈ψ|). We write |ψ〉 =

√
1− ε|0n〉+

√
ε|φ〉

without loss of generality, for some product state |0n〉 and
arbitrary state |φ〉. This allows an explicit expression for
trψ2

S in terms of ε and |φ〉 to be obtained. Each term of
this expression is then carefully upper bounded to give an
upper bound in terms of a sum of the amplitudes of |φ〉,
with weights that decrease exponentially with the Hamming
weight of basis states. In order to obtain a non-trivial bound
from this expression, the final stage of this part of the proof
is to use the fact that |0n〉 is the closest product state to |ψ〉
to argue that |φ〉 cannot have any amplitude on basis states
of Hamming weight 1. In its most general form, the result
we obtain is as follows.

Theorem 4. Given |ψ〉 ∈ (Cd)⊗n, let

1− ε = max{|〈ψ|φ1, . . . , φn〉|2 : |φ1〉, . . . , |φn〉 ∈ Cd}.

Then

tr(D⊗nδ |ψ〉〈ψ|)
2 ≤ Pprod(δ)

(
1−

4ε(1−ε) dδ2(1− δ2)
(1+(d− 1)δ2)2

+4ε3/2
(

(1− δ2)2 + d2δ4

(1+(d− 1)δ2)2

)2
)
.

In particular,

tr(D⊗n
1/
√
d+1
|ψ〉〈ψ|)2 ≤ Pprod(1/

√
d+ 1)

(
1−ε+ε2+ε3/2

)
.

Specialising to the particular case of the product test, we
deduce the following result.

Theorem 5. Given |ψ〉 ∈ Cd1 ⊗ · · · ⊗ Cdn , let

1− ε = max{|〈ψ|φ1, . . . , φn〉|2 : |φi〉 ∈ Cdi , 1 ≤ i ≤ n}.

Then

1− 2ε+ ε2 ≤ Ptest(|ψ〉〈ψ|) ≤ 1− ε+ ε2 + ε3/2.

Proof: The lower bound holds by general arguments. It
is immediate that, if applied to |φ1, . . . , φn〉, the product test
succeeds with probability 1. As the test acts on two copies
of |ψ〉, which has overlap 1 − ε with |φ1, . . . , φn〉, it must
succeed when applied to |ψ〉 with probability at least (1−ε)2.
The upper bound follows from Lemma 3 and Theorem 4.
The statement of Theorem 4 only explicitly covers the case

where the dimensions of all the subsystems are the same;
however, we can assume this without loss of generality.

In the case where ε is high, this result does not yet give a
useful upper bound. In the second part of the proof, we de-
rive a constant bound on Ptest(|ψ〉〈ψ|) based on considering
|ψ〉 as a k-partite state, for some k < n. Ptest(|ψ〉〈ψ|) can be
shown to be upper bounded by the probability that the test
for being product across any partition into k parties passes.
Informally speaking, if |ψ〉 is far from product across the n
subsystems, we show that one can find a partition such that
the distance from the closest product state (with respect to
this partition) falls into the regime where the first part of the
proof works.

Theorem 6. Given |ψ〉 ∈ Cd1 ⊗ · · · ⊗ Cdn , let

1− ε = max{|〈ψ|φ1, . . . , φn〉|2 : |φi〉 ∈ Cdi , 1 ≤ i ≤ n}.

Then, if ε ≥ 11/32 > 0.343, Ptest(|ψ〉〈ψ|) ≤ 501/512 <
0.979.

Between them, Theorems 5 and 6 imply Theorem 1. This
completes the overview of the proof; we now demonstrate
that the product test itself is essentially optimal.

III. OPTIMALITY OF THE PRODUCT TEST

Our test has perfect completeness in the sense that if |ψ〉
is exactly a product state then it will always pass the product
test. It is hard to precisely define soundness, since no state
is orthogonal to all product states: however, we can say that
our test has constant soundness in that if |ψ〉 has overlap
at most 1 − ε with any product state then it will pass the
product test with probability at most 1−Θ(ε).

In fact, if we consider only product-state tests with perfect
completeness, then we can show that our test has optimal
soundness: that is, it rejects as often as possible given
the constraint of always accepting product states. More
generally, suppose that a product-state test T is given |ψ〉⊗k
as input. Since the outcome of the test is binary, we can
say that T is an operator on the nk-qudit Hilbert space
with 0 ≤ T ≤ I and that the test accepts with probability
trTψ⊗k.

Let S be the set of product states in Cd1 ⊗ · · · ⊗ Cdn ,
and define Sk to be the span of {|φ〉⊗k : |φ〉 ∈ S}.
For a single system Cd, the span of {|φ〉⊗k : |φ〉 ∈ Cd}
is denoted Symk Cd. This is the symmetric subspace of
(Cd)⊗k, meaning that it can be equivalently defined to
be the set of vectors in (Cd)⊗k that is invariant under
permutation by the symmetric group Sk. This fact allows
the projector onto Symk Cd, which we denote Πsym

d,k , to be
implemented efficiently [26]. Also, it implies that Sk =
Symk Cd1 ⊗ · · · ⊗ Symk Cdn and that the projector onto
Sk, denoted ΠSk , is Πsym

d1,k
⊗ · · · ⊗Πsym

dn,k
.

Now we return to our discussion of product-state tests. If
trTφ⊗k = 1 for all φ ∈ S, then T ≥ ΠSk . Thus, T will
always accept at least as often as ΠSk will on any input, or



equivalently, taking T = ΠSk yields the test which rejects
as often as possible given the constraint of accepting every
state in Sk.

To understand ΠSk , note that the projector onto Symk Cd
is given by 1

k!

∑
π∈Sk

P (π), where

P (π) =
∑

i1,...,ik∈[d]

|i1, . . . , ik〉〈iπ(1), . . . , iπ(k)|.

For k = 1, Sym1 Cd simply equals Cd, and ΠS1 is the
identity operator on (Cd)⊗n. Thus, no non-trivial product-
state test is possible when given one copy of |ψ〉.

When k = 2, Sym2 Cd is the +1 eigenspace of (I+F)/2,
which is the space that passes the swap test. Thus, the
product test (in Protocol 1) performs the projection onto S2

and therefore rejects non-product states as often as possible
for a test on |ψ〉⊗2 that always accepts when |ψ〉 is a
product state. These arguments also imply that given |ψ〉⊗k,
projecting onto Sk yields an optimal k-copy product-state
test of |ψ〉. The strength of these tests is strictly increasing
with k, but we leave the problem of analysing them carefully
to future work.

Finally, this interpretation of the product test allows us to
consider generalisations to testing membership in other sets
S. The general prescription for a test that is given k copies
of a state is simply to project onto the span of {|ψ〉⊗k :
|ψ〉 ∈ S}. However, we will not explore these possibilities
further in this paper.

IV. QMA(2) VS. QMA(k)
In this section, we apply the product test to a problem in

quantum complexity theory: whether k unentangled provers
are better than 2 unentangled provers. This question can be
formalised as whether the complexity classes QMA(k) and
QMA(2) are equal [4], [5]. These classes are defined as
follows.

Definition 1. A language L is in QMA(k)s,c if there exists
a polynomial-time quantum algorithm A such that, for all
inputs x ∈ {0, 1}n:

1) Completeness: If x ∈ L, there exist k witnesses
|ψ1〉, . . . , |ψk〉, each a state of poly(n) qubits, such
that A outputs “accept” with probability at least c on
input |x〉|ψ1〉 . . . |ψk〉.

2) Soundness: If x /∈ L, then A outputs “accept” with
probability at most s on input |x〉|ψ1〉 . . . |ψk〉, for all
states |ψ1〉, . . . , |ψk〉.

We use QMA(k) as shorthand for QMA(k)1/3,2/3, and
QMA as shorthand for QMA(1). We always assume 1 ≤
k ≤ poly(n).

We also define QMAm(k)s,c to indicate that
|ψ1〉, . . . , |ψk〉 each involve m qubits, where m may
be a function of n other than poly(n).

Two of the major open problems related to QMA(k)s,c are
to determine how the size of the complexity class depends

on k and on s, c. It has been conjectured for some years [4],
[5] that in fact QMA(k) = QMA(2) for 2 ≤ k ≤ poly(n),
and that the soundness and completeness can be amplified
by parallel repetition in a way similar to BPP, BQP, MA,
QMA and other complexity classes with bounded error. In
fact, these conjectures are related: 2k independent provers
can simulate k independent realisations of a QMA(2) pro-
tocol in order to amplify the soundness-completeness gap,
and conversely, [4], [5] proved that QMA(2) amplification
implies that QMA(2) = QMA(poly). In this section, we
will fully resolve these conjectures, proving that QMA(2) =
QMA(poly) and that QMA(k) can have its soundness and
completeness amplified by a suitable protocol.

The most direct way of putting QMA(k) inside QMA(2)
is to ask two provers to each send the k unentangled proofs
that correspond to a QMA(k) protocol. If k = poly(n),
then each prover is still sending only polynomially many
qubits. Then the product test can be used to verify that the
states sent were indeed product states and can be used as
valid inputs to a QMA(k) protocol. The specific protocol is
described in Protocol 2.

Protocol 2 (QMA(k) to QMA(2)).

The QMA(2) protocol proceeds as follows.
1) Each of the two Merlins sends |ψ〉 :=
|ψ1〉 ⊗ . . .⊗ |ψk〉 to Arthur.

2) Arthur runs the product test with the two
states as input.

3) If the test fails, Arthur rejects. Otherwise,
Arthur runs the algorithm A on the state
sent by the first Merlin, and outputs the
result.

First observe that for YES instances (instances in the
language), the two Merlins can achieve at least the same
success probability that k Merlins can in the original pro-
tocol, so the completeness can only increase. Now consider
NO instances. Assume for now that the two Merlins always
send the same state. Then according to Theorem 1, if the
Merlins send states that are far from product, they are likely
to fail the product test, whereas basic continuity arguments
can show that if they send states that are nearly product
then the success probability will not be much larger than
the soundness of the original protocol. Thus, the soundness
does not become too much worse. These ideas establish

Lemma 7. For any m, k, 0 ≤ s < c ≤ 1,

QMAm(k)s,c ⊆ QMAkm(2)s′,c

where s′ = 1− Ω((1− s)2).

This is already strong enough to achieve amplification up
to constant soundness. However, Protocol 2 has a salutary



side effect that will allow us to achieve stronger amplifica-
tion. To see this, we will first introduce a further generali-
sation of the QMA(k) family. Let M be a set of Hermitian
operators M satisfying 0 ≤M ≤ I . Each M ∈M defines a
binary measurement with M corresponding to the “accept”
outcome and I −M corresponding to the “reject” outcome.
Then define QMAM

m(k)s,c to be the class QMAm(k)s,c with
Arthur restricted to performing measurements from M. For
example, if M = PROD is the set of product measurements
followed by post-processing, then QMAPROD(k) is the class
BellQMA(k) that was proved equal to QMA (for constant
k) by Brandão [27], [5]. We will be interested in taking
M = SEP. Note that for such measurements, M is a
separable operator, but I −M is not necessarily separable.

Armed with the definition of QMASEP, we can now
see that Protocol 2 produces a protocol that is not only
in QMA(2), but also QMASEP(2). More formally, we can
strengthen Lemma 7 to:

Lemma 8. For any m, k, 0 ≤ s < c ≤ 1,

QMAm(k)s,c ⊆ QMASEP
km (2)s′,c

where s′ = 1− Ω((1− s)2).

Proof: Suppose the first Merlin sends systems
A1, . . . , Ak and the second Merlin sends systems
B1, . . . , Bk. The “accept” outcome of the product test
corresponds to the tensor product of projectors onto the
symmetric subspaces of A1B1, A2B2, . . . , AkBk. These are
all separable across the A:B cut, and so their tensor product
is as well. The second step is to simply apply a measurement
entirely on A1, . . . , Ak, which is automatically separable.
Finally, performing two separable measurements in a row
creates a composite measurement which is also separable.

The advantage of QMASEP(k) is that it removes the
chief difficulty with QMA(k) amplification, which is that
conditioning on measurement outcomes can induce entan-
glement between systems we have not yet measured. This
phenomenon is known as entanglement swapping. However,
if we condition on the outcome of a measurement being
M , for some M ∈ SEP, then no entanglement will be
produced in the unmeasured states. As a result, cheating
provers cannot gain any advantage by sending entangled
proofs, and we obtain the following lemma.

Lemma 9. For any ` ≥ 1,

QMASEP
m (k)s,c ⊆ QMASEP

`m (k)s`,c` .

The idea is to simply repeat the original protocol ` times
in parallel and to accept iff each subprotocol accepts. Since
we are considering QMASEP protocols, obtaining a YES
outcome on one proof will not induce any entanglement on
the remaining proofs.

From Lemma 8 and Lemma 9, we can almost conclude
that strong amplification is possible. Indeed, when we start
with protocols with perfect completeness, we can apply
Protocol 2, repeat p(n) times, and reduce the soundness
from s to sO(p(n)). For the case of c < 1, we need one
additional argument to keep the completeness from being
reduced too much at the same time. Here we will use a
method for completeness amplification proved in both [4,
Lemma 5] and [5, Lemma 6].

Lemma 10 ([4], [5]). For any ` ≥ 1,

QMAm(k)s,c ⊆ QMA`m(k)1− c−s
3 ,1−exp(−`(c−s)2/2).

Our amplification procedure for general c < 1 is then to
1) Use Lemma 10 to bring the completeness exponen-

tially close to 1.
2) Use Lemma 8 to convert a general QMA(k) protocol

to a QMASEP(2) protocol.
3) Repeat the protocol polynomially many times to make

the soundness exponentially small.
This procedure then achieves

Theorem 11. 1) If s ≤ 1−1/poly(n), k = poly(n) and
p(n) is an arbitrary polynomial, then QMA(k)s,1 =
QMASEP(2)exp(−p(n)),1.

2) If c − s ≥ 1/poly(n), k = poly(n) and p(n)
is an arbitrary polynomial, then QMA(k)s,c =
QMASEP(2)exp(−p(n)),1−exp(−p(n)).

There are obvious variants of Theorem 11 to cover the
case of limited message size, whose statements we leave
implicit.

V. COMPLEXITY-THEORETIC IMPLICATIONS

A key application of Theorem 11 is to the protocol of
Ref. [5] that puts 3-SAT on n clauses inside the com-
plexity class QMAlog(

√
n poly log(n))1−Ω(1),1. Applying

Theorem 11 lets us simulate this using two provers with
perfect completeness and arbitrary soundness, so that we
obtain

Corollary 12. Let ` : N → N be polynomially bounded.
Then there is a universal constant 0 < s < 1 such that

3-SAT ∈ QMA`(n)
√
n poly log(n)(2)s`(n),1.

In other words, there is a 3-SAT protocol with two provers,
`(n)
√
npoly log(n)-qubit proofs, perfect completeness and

soundness s`(n).

Therefore, making assumptions about the hardness of
3-SAT allows us to prove hardness results for the complexity
class QMAlog(2), and stronger assumptions naturally imply
stronger hardness results. We formalise this correspondence
as the following corollary.



Corollary 13. Assume that, for some function ` : N → N
such that `(n) = o(n), 3-SAT /∈ DTIME(exp(O(`(n)))).
Then, defining d = 2`(n)

√
n polylog(n),

QMAlog(d)(2)s`(n),1 * DTIME(poly(d))

for some universal constant 0 < s < 1. In particular, taking
`(n) = 1, we have

QMAlog(d)(2)s,1 * DTIME(poly(d))

assuming that 3-SAT 6∈ DTIME(exp(
√
n logO(1)(n))).

Note that the (not implausible) Exponential Time Hypoth-
esis of Impagliazzo and Paturi [28] states that 3-SAT 6∈
DTIME(exp(`(n))) for any `(n) = o(n). We conclude
this section by discussing three natural QMAlog(2)-complete
problems whose hardness is implied by this hypothesis.
For simplicity, we focus on the weakest possible hardness
assumption in Corollary 13, but it should be easy to see how
to strengthen this assumption to obtain stronger results.

First observe that the acceptance probability
in a QMAm(2) protocol can be expressed as
maxρ∈SEP(2m,2m) trMρ, where 0 ≤ M ≤ I is the
measurement resulting from the verifier’s quantum circuit
and SEP(dA, dB) denotes the set of separable density
matrices on dA × dB dimensions. In other words,
QMAm(2) is equivalent to optimising a linear objective
function over the convex set SEP(2m, 2m).

In some cases, it may be useful to obtain an explicit
description of M . This can be achieved up to error ε
by running the verifier’s circuit poly(2m, 1/ε) times and
performing tomography. As a result, we trivially obtain
that QMAm(2)s,c ⊆ NTIME(poly(2m, n, 1/(c − s))). In
particular, QMA(2) ⊆ NEXP. Unfortunately this cannot be
scaled down to place QMAlog(2) in NP. This is because
the verifier in a QMAlog(2) protocol still can perform a
poly-time quantum computation. Thus, we only have that
QMAlog(2) ⊆ NPBQP.

Application 1: Separability-testing. A folk theorem of
convex optimisation [29] states that the problem of opti-
mising a linear function over a convex set, such as SEP, is
equivalent to determining membership in that set. Thus, we
should be able to relate QMAlog(2) to the problem of deter-
mining membership in SEP. To make this precise, for any
convex K ⊆ Rd we define B(K, ε) to be {x : ∃y ∈ K, ‖x−
y‖ ≤ ε} when ε > 0 and {x : @y 6∈ K, ‖x−y‖ ≤ −ε} when
ε < 0. The weak membership problem for K, WMEMε(K),
is to determine whether a point x belongs to B(K, ε)c or
B(K,−ε) given the promise that one of these is the case.
The weak optimisation problem for K, WOPTε(K) is to
maximize a linear objective function over any set L satisfy-
ing B(K,−ε) ⊆ L ⊆ B(K, ε). Given some mild conditions
on K, we can reduce WOPTε(K) to WMEMε/ poly(d)(K)
in polynomial time [29]. This fact has been used to show
the NP-hardness of WMEM1/ poly(SEP) in Refs. [22], [19],

[30] and, previously, of WMEM1/ exp(SEP) by Gurvits [18]
(although the connection to QMAlog(2) was only observed
by [30]).

Unfortunately, many of these techniques break down in
the setting of constant error. We believe that it should not be
possible to approximate SEP(d, d) to within a (sufficiently
small) constant accuracy in time poly(d). However, we
are able to rule out only algorithms that have the further
restriction of recognizing a nearly convex set that in turn
approximates SEP to constant accuracy.

Corollary 14. Let K be a convex subset of the space of
d2×d2 Hermitian matrices such that K ⊆ B(SEP(d, d), δ)
and SEP(d, d) ⊆ B(K, δ), where B(·, ·) is defined relative
to the trace norm and δ > 0 is a universal constant.
Then, assuming 3-SAT 6∈ DTIME(exp(

√
n logO(1)(n))),

WMEM1/ poly(K) cannot be decided in time poly(d).

(As with the other hardness results in this section, the
precise value of δ is determined by the protocol in Ref. [5].)

Proof: Solving WMEM1/ poly(d)(K) in polynomial
time would allow us to solve WOPT1/ poly(d)(K) in poly
time, which in turn would give a poly-time algorithm for
WOPTδ+1/ poly(d)(SEP). This last claim, together with
Corollary 13, would contradict the hypothesis on the com-
plexity of 3-SAT.

Application 2: Minimum output entropy of quantum chan-
nels. Our results also have implications for quantum infor-
mation theory. Let N denote a quantum channel with d-
dimensional input and output. Define the minimum output
Rényi α-entropy of N to be Smin

α (N ) = minρ Sα(N (ρ)),
where Sα(σ) = 1

1−α log trσα and the minimum is taken
over all quantum states ρ. Note that Smin

α (N ) is also
equivalent to α

1−α log ‖N‖1→α, where ‖ · ‖1→α (also called
να in e.g. [20]) is the `1 → `p norm. When α = 0, 1,∞, we
define Sα(σ) by letting α approach these values, obtaining
S0(σ) = log rankσ, S1(σ) = − trσ log σ and S∞(σ) =
− log ‖σ‖∞. Additivity of Smin

1 (N ), the minimum output
entropy, is intimately connected to additivity of the Holevo
capacity [31], [32].

It was observed by Matsumoto [33] (citing a personal
communication from Watrous) that the maximum acceptance
probability of a QMAm(2) protocol is precisely ‖N‖1→∞
for some quantum channel N acting on d = 2m dimen-
sions. This implies that determining whether Smin

∞ (N ) is
≥ log(1/s) or ≤ log(1/c) is a complete problem for
QMAlog(d)(2)s,c under BQP reductions.

The QMA(2)-completeness of estimating Smin
∞ implies

that other information-theoretic quantities that are close
to Smin

∞ are also hard to approximate. For example, for
any α ≥ 0, we have Smin

α (N ) ≥ Smin
∞ (N ) but also

Smin
α (N ) = 0 iff Smin

∞ (N ) = 0. Thus, our hardness result
for approximating Smin

∞ immediately translates to a hardness
result for approximating Smin

α .



Corollary 15. There exists a universal constant
δ > 0 such that for any α ≥ 0, if 3-SAT 6∈
DTIME(exp(

√
n logO(1)(n))) then it is impossible to

determine whether Smin
α (N ) = 0 or Smin

α (N ) ≥ δ in
worst-case time poly(d).

Beigi and Shor previously showed that it is NP-hard
to compute the minimum output entropy up to 1/poly(d)
accuracy [32]. Our result improves theirs, but under a more
restrictive complexity assumption. Another major goal in
information theory is to estimate the regularised minimum
output entropies of quantum channels, which are defined to
be

SR,min
α (N ) := lim inf

n→∞

1
n
Smin
α (N⊗n).

The SR,min
α (N ) are relevant to determining the ultimate

channel capacity, to proving strong converse theorems [34]
and to cryptographic protocols [35]. Our hardness result for
Smin
α immediately gives us the equivalent hardness result

for SR,min
α . The reason is that our proof of amplification

for QMA(2) protocols (see Lemma 9) essentially works by
constructing a channel N for which SR,min

∞ (N ) = Smin
∞ (N )

by design.
For general channels, we automatically have

SR,min
α (N ) ≤ Smin

α (N ); however, the famous failures
of the additivity conjecture imply that sometimes this
inequality can be strict, with examples known for α ≥ 1
[2], [36] and for α near 0 [37]. Still, these examples only
demonstrate that SR,min

α can deviate very slightly from
Smin
α . On the other hand, various lower bounds for SR,min

α

are known [38], [39], [40], [41], and it may be that one of
these bounds could be related to Smin

α , thereby proving that
SR,min
α cannot be far from Smin

α . Our results do not rule
out the possibility that Smin

α may be fruitfully related to
SR,min
α . However, they do imply that these lower bounds on
SR,min
α (and thereby on Smin

α ) are unlikely to be efficiently
computable, or if they are, they are likely to be extremely
loose bounds in general.

Application 3: mean-field approximation. Finally, we dis-
cuss an application from condensed-matter physics. Con-
sider a system of n d-dimensional quantum systems ar-
ranged in a lattice with identical nearest-neighbour pairwise
interactions. The mean-field approximation replaces the true
nearest-neighbour graph with the complete graph. When
the number of spatial dimensions is 3 (or more), this is
often a reasonable approximation. If K is a fixed two-qudit
Hamiltonian and Ki,j denotes the action of K on systems
i, j and the identity on the other systems, then the total
Hamiltonian is H =

∑
i6=j Ki,j . To set the overall scale of

the problem, assume that 0 ≤ K ≤ I . One of the more
important physical questions about H is to determine its
ground-state energy; that is, its smallest eigenvalue.

In Ref. [42], the quantum de Finetti theorem was used to
show that when n� d2, then the ground state of H is very

close to a product state. In this case, finding the ground-
state energy of H is equivalent to minimising tr ρK over
all ρ ∈ SEP(d, d). Again applying Corollary 13, we obtain:

Corollary 16. Assuming that 3-SAT 6∈
DTIME(exp(

√
n logO(1)(n))) and with H defined as above,

it is impossible to estimate min{tr ρK : ρ ∈ SEP(d, d)}
in time poly(d) to within o(1) error. Equivalently, it is
impossible to estimate the ground-state energy of H to
within additive error o(n2).

Previous work on the hardness of approximating ground-
state energy of quantum systems generally had d constant
and only ruled out the possibility of 1/poly(n) approxi-
mation error. In terms of approximation errors, our result
achieves one of the goals of the conjectured quantum PCP
theorem [43]. However, we require d to grow asymptoti-
cally, and we achieve a hardness result much weaker than
QMA-hardness. Indeed, due to the classical PCP theorem
combined with the Exponential Time Hypothesis, finding the
ground state of a system of d2 log(d) bits (without any sym-
metry constraint) is likely to require time exp(d2 log(d)),
while our results merely imply an Ω(exp(log2(d))) lower
bound. Still, our result provides a superpolynomial bound on
an important class of Hamiltonians that had been previously
considered to be computationally easy to work with.

VI. TESTING FOR PRODUCT UNITARIES

As well as being useful for testing quantum states, the
product test has applications to testing properties of unitary
operators. The results we obtain will be in terms of the
normalised Hilbert-Schmidt inner product, which is defined
as 〈M,N〉 := 1

d trM†N for M,N ∈ M(d), where M(d)
denotes the set of d × d matrices. Note that, with this
normalisation, |〈U, V 〉| ≤ 1 for unitary operators U , V .
The following correspondence (also known as the Choi-
Jamiołkowski isomorphism), underlies our ability to apply
the product test to unitaries.

Let |Φ〉 be a maximally entangled state of two d-
dimensional qudits, written as 1√

d

∑d
i=1 |i, i〉 in terms of

some basis B = (|1〉, . . . , |d〉). For any matrix M ∈M(dn),
define |v(M)〉 := (M ⊗ I)|Φ〉⊗n. Then 〈j|〈k|v(M)〉 =
〈j|M |k〉√

dn
. In particular, for any matrices M,N ∈ M(dn),

〈M,N〉 = 〈v(M)|v(N)〉 = trM†N/dn.
We consider the problem of testing whether a unitary

operator is a tensor product. That is, we are given access to a
unitary U on the space of n qudits (for simplicity, restricting
to the case where each of the qudits has the same dimension
d), and we would like to decide whether U = U1⊗· · ·⊗Un.
This is one possible generalisation of the classical problem
of testing linearity of functions f : {0, 1}n → {0, 1} [23];
the classical special case is obtained by restricting U to be
diagonal in the computational basis and to have diagonal
entries all equal to ±1.



In Protocol 3 we give a test that solves this problem using
the product test. The test always accepts product unitaries,
and rejects unitaries that are far from product, as measured
by the normalised Hilbert-Schmidt inner product.

Protocol 3 (Product unitary test).

The product unitary test proceeds as follows.
1) Prepare two copies of the state |Φ〉⊗n,

then in both cases apply U to the n first
halves of each pair of qudits to create two
copies of the state |v(U)〉 ∈ (Cd2)⊗n.

2) Return the result of applying the prod-
uct test to the two copies of |v(U)〉,
with respect to the partition into n d2-
dimensional subsystems.

Let the probability that this test passes when applied to
some unitary U be Ptest(U). Then we have the following
theorem, which proves a conjecture from [12].

Theorem 17. Given U ∈ U(dn), let

1− ε = max{|〈U, V1 ⊗ · · · ⊗ Vn〉|2 : V1, . . . , Vn ∈ U(d)}.

Then, if ε = 0, Ptest(U) = 1. If ε . 0.106, then Ptest(U) ≤
1− 1

4ε+
1
16ε

2+ 1
8ε

3/2. If 0.106 . ε ≤ 1, Ptest(U) ≤ 501/512.
More concisely, Ptest(U) = 1−Θ(ε).

The proof is not quite immediate from the previous
results; the key problem is that the closest product state to
|v(U)〉 may not correspond to the closest unitary operator
to U .

Our test is sensitive to the Hilbert-Schmidt distance of a
unitary from the set of product unitaries. One might hope to
design a similar test that instead uses a notion of distance
based on the operator norm. However, this is not possible.
For example, if we could detect a constant difference in the
operator norm between an arbitrary unitary U and the set of
product unitaries then we could find a single marked item
in a set of size dn. By the optimality of Grover’s algorithm,
this requires Ω(dn/2) queries to U . More generally, any test
that uses only a constant number of black-box queries to U
can only detect an Ω(1) difference in an Ω(1) fraction of
the dn dimensions that U acts upon.

VII. CONCLUSION

Our main result can be seen as a “stability” theorem
for the output purity of the depolarising channel. It is an
interesting problem to determine whether a similar result
holds for all output Rényi entropies for the depolarising
channel, or even for all channels where additivity holds. As
a more modest open question, can Theorem 1 be tightened
further, perhaps by improving the constant in the ε3/2 term?
It would also be interesting to improve the constants in

Theorem 1 in the regime of large ε, as at present they are
extremely pessimistic. The regime of large ε is generally
somewhat mysterious: for example, we do not know the
minimum value of Ptest, or the largest distance from any
product state that can be achieved by a state of n qudits.
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